AEROTOX (Atmospheric Toolbox)

Throughout the whole year, south European countries experience dust-laden winds blowing from the Sahara desert, called ‘Sirocco” which cause “seasonal haze episodes” which sometimes even result in mud rain. There are various words which describe this natural activity, including Harmattan used in West Africa Region for the dust created from November till March or Ghibli as used by North Africans tribes which is normally caused in Summer season. The phenomenon affects society in different ways notably

  1. Transport and Communications – Affects visibility at airports and shipping lanes and radio communications
  2. Health – The dust in the air produces dry skin and cracked lips. It also presents more serious problems for asthmatics – and can lead to silicosis, a lung disease caused due to a high content of quartz in the dust.
  3. Generation of Electricity from PV Panels – The lack of visibility reduces the efficiency of PV panels hence the need for extra generation from the power stations.

The aim of this research project is to use the Satellite Sentinel 5p datasets daily to predict the Saharan desert movement over the south Mediterranean region in advance at a very high resolution of 7x3km as opposed to 10x10km which are available today. The prediction model core algorithms will make use of the UV aerosol Index from sentinel 5p, and the prediction results are to be available for free online at a cloud Grid Geographical Information system, which will be created on purpose for this research study.

Such a system would be beneficial for the Malta Health Directorate, and the people at large, as the former would be able to inform the public ahead, who also would be able to check on a daily basis the Sahara Desert aerosols prediction for the days to come, and therefore precautions could be taken if necessary.

Sahara Desert Dust Concentration Credit (http://wetter.de)

The project is financed by MCST under the Space Research Fund. The lead partner is MCAST and the private partner is 4Sight technology